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J .  Phys. A :  Math., Nucl. Gen., Vol. 6 ,  March 1973. Printed in Great Britain. 0 1973 

Distribution of zeros of the partition function of the antiferro- 
magnetic Husimi-Temperley model I1 

S Katsura and M Ohminamii 
Department of Applied Physics, Tohoku University, Sendai, Japan 

MS received 18 August 1972, in revised form 26 September 1972 

Abstract. This paper is concerned with determining the distribution of zeros of the partition 
function in the antiferromagnetic case. A principle to determine the limiting locus of zeros 
of the partition function in the complex fugacity plane has been proposed in a previous paper 
with a plausible argument and the locus was obtained for the antiferromagnetic Husimi- 
Temperley model. The principle states that the locus is obtained as the place where the real 
parts of two branches of X(z) (s analytic continuation of lim l / N  In Z ,  where Z is the 
partition function), whose real parts are the largest and the next largest among several 
branches, take the same value. Now the proof of the principle is given for the AHT model. 
The principle is intuitively plausible and it is suggested that itsnay work for quite a wide class 
of models. 

1. Introduction 

This paper is concerned with determining the distribution of zeros of the partition 
function in the antiferromagnetic case. In a previous paper (Ohminami et al 1972, 
to be referred to as OAK) an exactly soluble model for the antiferromagnet (antiferro- 
magnetic Husimi-Temperley (AHT) model) was introduced and the distribution of zeros 
of the partition function in the fugacity plane for the model was obtained. The model is 
defined in such a way that a lattice can be divided into two equivalent sublattices and all 
pair interaction energies between spins on the same sublattice are -yJa,aj/N, and 
those on the opposite sublattice are - Joiaj /N (J < 0 for the antiferromagnetic inter- 
action). 

In OAK the locus of zeros was obtained as the place where the real parts of the two 
branches of the complex free energies, whose real parts are the smallest and the next 
smallest (real parts of In Z the largest and the next largest) among several branches, 
take the same value. This description was given in OAK with a plausible argument in the 
analogy to the case where the transfer matrix method is applicable (Katsura and 
O h i n a m i  1972, Ohminami et al 1972,§ 3). For a one-dimensional hard core gas the 
principle of the maximum of Re In Z has been proved by Penrose and Elvey (1968). 
In this paper the proof of the principle is given for the AHT model. The principle seems to 
work for a wide class of models. 

2. Asymptotic form of the partition function 

The partition function of the antiferromagnetic Husimi-Temperley model is written as 
t Now at The Electrical Communication Laboratory, Musashino, Tokyo, Japan. 
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For the explanation of the model and notation, see OAK. Equation (2.1) is transformed 
into 

J l + y  ‘I’ du 
exp [ {g - 2iWT T) U} N ]  

N / 2  2mH J l + y  
x exp( - u2 - 0’) c 

n,=O 

+ 4 (  -J 2 N k T  ”) 2 ”’.)..] n p = O  ( y )  exp [{-E kT 

J l + y  
2 N k T  2 2 N k T  2 

Here we used the transformation 

& = n - 1 / 2  exp( - u2 + 2su) du ( 2 . 3 ~ )  

exp( - U’ - 2isu) du. (2.3b) s_: e-s* - - n - 1 / 2  

for real s. The summation in equation (2 .2)  can be carried out and gives 

where 

h - i{( 1 + y ) / 2 }  l i2x + {(I - y) /2}  ‘/’y 
t 

1 
4t 

f ( x , y )  = --(x2+y2)+$ln 

1 h-i((l+y)/2)”2x-{(1 -y);/2}”’4’ 
t 

and 

2k T 2mH 
- J ’  - J  

t = - -  A = - -  

(2.4) 

When the real temperature t and the complex magnetic field h are given, points x, 
y which maximize Re f (x, y) are obtained from 
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hence they are given by coupled equations 

x = -i(?)”’(tanh h-i{(l +y)/2)’”x+ ((I -y)/2)”’y 
t 

1 h -i{(I +y)/2}’”x- {(I - ~ ) / 2 } ” ~ y  + tanh 
t 

and 

y = (9) ’”( tanh 
h-i{(l +y)/2}”2x+{(1 - ~ ) / 2 } ” ~ y  

t 

h-i{(l + Y ) / ~ } ” ~ x  - {(I - ~ ) / 2 } ” ~ y  - tanh 
t 

(2.8a) 

(2.8b) 

The coupled equations (2.8a) and (2.8b) can be decomposed into two equations each of 
which contains only x, h, t and only y ,  h, t (see equations (4.6) and (4.9)). 

In general we have an infinite number of pairs x, y, which satisfy (2.8a) and (2.8b) for 
given t and h or t and the fugacity z ( = e- 2 h l f ) .  They are different branches of an analytic 
function defined by equations (2.8~) and (2.8b). The function f(x, y )  regarded as a func- 
tion of z is a many-valued function and is denoted by ~ ( z )  (E f(x(z), y(z))). First we 
consider the case where there exists only one pair x, y which makes Re f(x, y )  the largest 
among branches off(x, y) .  Let the point be denoted by xo, y o ,  and the functionf(x,, yo )  
regarded as a one-valued function of z by xmax(z) (= f(x,(z), yo(z))). Expanding f(x, y )  
at xo, y o ,  and evaluating the integral by the contribution of the integrand near xo, y o ,  
we have (see Appendix) 

In the limit N + CO we have 

(2.10) 

Suppose z moves along a curve in the complex z plane. When z gets to a point at which 
the largest and the second largest among Re f(xi ,  yi) become equal (the branches are 
denoted byf(xl ,  y , )  andf(x2, y 2 ) )  and at which Imf(x , ,  y l )  # Imf(x2,  y 2 ) ,  the contri- 
butions of these two saddle points become of the same order, and hence for such z, 
we have 

A set of points at  which the largest and the second largest of Re f(x, y )  are equal, 
makes an arc in the complex z plane. In a region which does not contain such arcs, 
zmax(z) is regular. On such arcs zmax(z) is discontinuous though Re ~ ( z )  can be continuous 
(phase transitions in the complex h or complex z plane). Phase transition of the ferro- 
magnet in real z was clarified using such a mechanism by Husimi (1953, see also Katsura 
1955). The present paper is an application of the principle to the antiferromagnets in 
the complex z plane. 
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3. Zeros of the partition function 

In this section we will give a prescription for obtaining the zeros of the partition function 
with its proof. First we prove a theorem. 
Theorem. Define 

1 
N 

xM(z) = - In Z(t, z ,  N ) .  (3.1) 

Let R be a region in the complex z plane in which zeros of Z(t, z ,  N )  do not exist for 
N > N o .  Then zmax(z) is regular in R. 
Proof. zN(z )  has no poles and singularities except zeros of Z,(t, z ,  N ) .  In any closed 
region Din  R we can take M independent of Ai and z such that I X , ~ ( Z ) I  < M .  From (2.10), 
zN(z )  tends to zmax(z) in R. Hence by Vitali’s theorem xmax(z) is regular in D. Since we 
can take any closed region as D in R, zmax(z) is regular in R and hence the theorem is 
proved. 

The theorem is an extension? of the theorem of Yang and Lee (1952, theorem 2 ,  
see also Huang 1963). Hence by the contraposition of the theorem, a point at which 
xmax(z) is not regular, is a limit point of zeros of the partition function. Thus an arc on 
which zmax(z) is not regular, obtained as a point where Re f (x l ,  jl) = Re f ( x 2 ,  j2) and 
Im f ( x l ,  y l )  # Im f (x2 ,  y 2 ) ,  is a set of limit points of zeros of the partition function. 

Indeed comparison of (2.9) and (2.11) shows that we cannot make iZ(t, z ,  N)l < E 

in a given neighbourhood of z at which only one zmax(z) exists, while Z(t,  5, N )  = 0 is 
possible only in the neighbourhood of z at which Re f ( x l ,  y , )  = Re f(x, , y 2 ) .  It is to be 
noted that the reverse of the Yang-Lee theorem does not hold for the antiferromagnetic 
case (while it does for the ferromagnetic case). When we take a region R inside which 
zmax(z) is regular, then zeros of Z(t, z ,  N )  cannot be generally excluded for such a region 
even for sufficiently large N .  (When we take a point zo and a neighbourhood of zo in R. 
zeros of Z(t ,  z ,  N )  can be excluded for sufficiently large N in this neighbourhood.) 

Thus the prescription for obtaining the locus of zeros of the partition function was 
proved as a necessary and sufficient condition. The loci of zeros obtained by this pres- 
cription have already been shown in OAK. The circle theorem for the ferromagnetic 
Husimi-Temperley model can also be proved by the present method, though it is a 
direct consequence of the Lee-Yang theorem for the Ising ferromagnet (Katsura 1955). 

4. Reduction of coupled equations (2.84 and (2.8b) 

The magnetization 0 (per spin) is given by 

h-i{(1 +y)/2)’/2x-((1 -y)/2)’j2y + 3 tanh 
t (4.1) 

?.Modifications of theYang-Lee theorem presented here(R may not include the real axis,andadd ‘for N > N o ’ )  
are irrelevant to the essentiality of the Yang-Lee theorem. 
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When we put 

equations ( 2 . 8 ~ )  and (2.8b) are transformed into 

h - ap - ya, 

h - aa- yap 

a3 = tanh 
t 

op = tanh 
t 

(4.3) 

and we see that a, and ap are the complex magnetization of sublattices ct and p. In terms 
of aa and ap, the negative of the complex (Helmholtz) free energy multiplied by t (equation 
(2.5)) is written in 

h - ap - yo3 ( t 
1 

4t f ( x ,  y) = - { 2a,ap + ?(a: + a,’)) + 4 In 2 cosh 

h - ca - y a p  

t 

(4.4) 

Eliminating h, we have 

In terms of a,+ap and 03-ap the coupled equations (2 .8~)  and (2.8b) to determine 
x and y are decomposed into two independent equations 

and 

tS,  arccosh A 
(1 - y ) ( A * -  l)’j2 

aa+ap = 

A = - -  2s1 c, 
a a  + ap 

S2(2h - t arccosh B) 
a,-ap = 

(1 + y ) ( B 2 -  1)1’2 
(4.9) 

(4.10) 
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(1 - YHO,  - 00) 

(1 -?)(a, - up) 

S ,  = sinh 
t 

(4.1 1) 

C, = cosh 
t 

Equation (4.6) with equations (4.7) and (4.8) contains only a,+ag, and equation (4.9) 
with equations (4.10) and (4.1 1) contains only an - op. 

We consider the case for real h. Equation (4.9) always has a solution in which a, = gp 

( y  = 0). It has two real solutions aa-aB = & ((1 - y ) / 2 ) -  1 ’ 2 y ,  at low temperature and at 
low field. These two solutions become pure imaginary at high temperature. The 
solution y = 0 is a paramagnetic state. Equation (4.6) was derived under the condition 
az # cO. When a, = up,  equation (4.6) is replaced by 

h- ( I  +?)ap 
ap = tanh 

t 
(4.12) 

where up = (a,+as)j2. 
The analysis of the solutions (4.6) and (4.9) clarifies that the antiferromagnetic free 

energy is lower than the paramagnetic free energy in the antiferromagnetic state (see 
Appendix). 

5. Conclusion 

This paper is concerned with determining the distribution of zeros of the partition 
function in the antiferromagnetic case. A principle was proposed and used in obtaining 
the locus of the AHT model in a previous paper. The principle states that the locus is 
obtained as the point where the real parts of two branches of ~ ( z ) ,  whose real parts are 
the largest and the next largest, take the same value. In that paper a plausible argument 
was used by analogy with the case where the transfer matrix method is applicable 
(Katsura and Ohminami 1972, Ohminami et a1 1972,s 3). 

In this paper the proof of the principle was given for the case of the AHT model. 
The principle is now proved to work for the one-dimensional hard rod model (Penrose 
and Elvey 1968), the one-dimensional antiferromagnetic model (Katsura and Ohminami 
1972), and the ferromagnetic and antiferromagnetic Husimi-Temperley models. The 
principle seems to work for a wide class of models. Ever since the work of Yang and Lee 
(1952) there has been a need for a similar theorem in the antiferromagnetic type of case. 
The suggested principle, if provable for a wide class of cases generally, could well be one 
of the missing pieces of the puzzle. 
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Appendix. Saddle point method for a function of two variables 

Consider an integral 

with such a function f ( x ,  y )  where limx+ + a Re f(x, y )  = - CO for fixed y and limy+ oc 

Ref(x, y) = - CO for fixed x are satisfied. 
First we consider I, = J? ~ dx eNf(x-Y) regarding y as a parameter. Let x j  be points 

in the complex x plane which make Re f(x,  y) maxima for a given y. The saddle points xi 
are obtained from df/dx = 0. The path of the integration is deformed to be a steepest 
path through the most dominant saddle point. In general x j  is a function of y. Then 

where C j  is taken for such points x j  that lie on the steepest path C (in the complex x 
plane), which goes from - co to +CO and passes through the most dominant saddle 
point. 

We put 

then the direction of the steepest line near x j  is given by 

4 j  = (A.4) 

and the integration path is replaced by an infinite line with this direction at each x j .  
Thus 

1, - 1 exp(Nfxx(xj, y)) 1 e'@j drj exp( - NRjr:/2) 

Next we substitute (AS)  into (A.l) 

and yk the points which make Re FLy) .maxima. Replacing y by yk except that on the 
exponent Nf(xj,y), and carrying out the integration in a similar way as previously, 
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we have 

Since x = x(y) is determined byf,(x, y )  = 0, the differentiation on F can be written 
as 

Hence x j  and y k  are determined by solving f, = 0 and f, = 0. The value of Fyy at Y k  is 
given by 

(A. 11) F ( ) = f ~ ; W - ( f ( $ ) ) 2 , / f ~ ; k )  YY y k  

where f t ! )  = fxx(xj, y k )  etc. 
Substituting (A.8) and (A. l l )  into (A.l) we have 

I Re x 

(A. 12) 

I m  Y 1 Im Y 
I 

I 

I ' YI 
mox min m o x  R e  y Re Y - - - mpx 

4; 
(C) 

r; 7 y3 

(61 

Figure 1. Saddle points and the path of the integration for real h. (a) x plane; (b) antiferro- 
magnetic state in y plane; (c) paramagnetic state in y plane. 
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When N is sufficiently large, Xj C, is replaced by the largest term, which is denoted by 
x j  = xo, y, = yo. Then 

(A. 13) 

where 4o is the value of the phase factor at  (xo, yo )  corresponding to that in (A.12). 
From the analysis of 6 4 we see that three important saddle points, y , ,  y, = 0, 

y ,  = - y,  ,exist in the second integralJ2 dy. In the antiferromagnetic region, y, and y, 
are real, f y y ( x o ,  y,) = f y y ( x o ,  y3) c 0, f y y ( x o ,  y,) > 0 and the most dominant saddle 
points are y ,  and y, (= yo), while in the paramagnetic region, y ,  and y 3  are pure imagin- 
ary, f y y ( x o ,  y,) = f y y ( x o ,  y,) > 0, f y y ( x o ,  y2) < 0, and the most dominant saddle point is 
y, (= yo), for real h. When h goes from the antiferromagnetic region to the para- 
magnetic region, the most dominant saddle point changes from y,  (y,) to y2 at the critical 
field (figure 1). When h is complex, a similar situation occurs though y, and y, are 
neither real nor pure imaginary. 
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